Imports DataAccessLayer

Public Class BuildingBL
 Dim objBuildingDL As BuildingDL
 Private intBldgId As Integer
 Private stBldg As String
 Private intProjno As Integer
 Private decLandArea As Decimal
 Private decBuiltUpArea As Decimal
 Private dbGovtRate As Double
 Private intBuildingType As Integer
 Public Property BldgId As Integer
 Get
 Return intBldgId

 End Get
 Set(ByVal value As Integer)

 intBldgId = value

 End Set
 End Property
 Public Property Bldg As String
 Get
 Return stBldg

 End Get
 Set(ByVal value As String)

 stBldg = value

 End Set
 End Property
 Public Property Projno As Integer
 Get
 Return intProjno

 End Get
 Set(ByVal value As Integer)

 intProjno = value

 End Set
 End Property
 Public Property LandArea As Decimal
 Get
 Return decLandArea

 End Get
 Set(ByVal value As Decimal)

 decLandArea = value

 End Set
 End Property
 Public Property BuiltUpArea As Decimal
 Get
 Return decBuiltUpArea

 End Get
 Set(ByVal value As Decimal)

 decBuiltUpArea = value

 End Set
 End Property
 Public Property GovtRate As Double
 Get
 Return dbGovtRate

 End Get
 Set(ByVal value As Double)

 dbGovtRate = value

 End Set
 End Property
 Public Property BuildingType As Integer
 Get
 Return intBuildingType

 End Get
 Set(ByVal value As Integer)

 intBuildingType = value

 End Set
 End Property
 Public Function InsertUpdateBuilding(ByVal Building As BuildingBL) As Integer
 Try
 Dim params As Dictionary(Of String, Object)

 params = New Dictionary(Of String, Object)

 params.Add("@Id", Building.BldgId)

 params.Add("@Name", Building.Bldg)

 params.Add("@Projno", Building.Projno)

 params.Add("@Land_Area", Building.LandArea)

 params.Add("@BuiltUp_Area", Building.BuiltUpArea)

 params.Add("@Govt_Rate", Building.GovtRate)

 params.Add("@Building_Type", Building.BuildingType)

 Return objBuildingDL.InsertUpdateBuilding(params, Nothing)

 Catch ex As Exception
 Throw ex

 End Try
 End Function
 Public Function DeleteBuilding(ByVal Id As Integer) As Integer
 Try
 Dim params As Dictionary(Of String, Object)

 params = New Dictionary(Of String, Object)

 params.Add("@Id", Id)

 Return objBuildingDL.DeleteBuilding(params, Nothing)

 Catch ex As Exception
 Throw ex

 End Try
 End Function
 Public Function LoadBuildingType() As DataTable
 Return objBuildingDL.LoadBuildingType()

 End Function
 Public Function CheckBuildingUsed() As DataTable
 Return objBuildingDL.CheckBuildingUsed()

 End Function
 Public Function CheckBuildingExists() As DataTable
 Try
 Return objBuildingDL.CheckBuildingExists()

 Catch ex As System.Exception
 Throw ex

 End Try
 End Function '
End Class
Imports DataAccessLayer

Public Class WingBL
 Dim objWingDL As WingDL
 Private intWingno As Integer
 Private strWing As String
 Private intProjno As Integer
 Private intBldgNo As Integer
 Private boolStatus As Boolean
 Public Property Wingno As Integer
 Get
 Return intWingno

 End Get
 Set(ByVal value As Integer)

 intWingno = value

 End Set
 End Property
 Public Property Wing As String
 Get
 Return strWing

 End Get
 Set(ByVal value As String)

 strWing = value

 End Set
 End Property
 Public Property Projno As Integer
 Get
 Return intProjno

 End Get
 Set(ByVal value As Integer)

 intProjno = value

 End Set
 End Property
 Public Property BldgNo As Integer
 Get
 Return intBldgNo

 End Get
 Set(ByVal value As Integer)

 intBldgNo = value

 End Set
 End Property
 Public Property Status As Boolean
 Get
 Return boolStatus

 End Get
 Set(ByVal value As Boolean)

 boolStatus = value

 End Set
 End Property
 Public Function InsertUpdateWing(ByVal Wing As WingBL) As Integer
 Try
 Dim params As Dictionary(Of String, Object)

 params = New Dictionary(Of String, Object)

 params.Add("@Id", Wing.Wingno)

 params.Add("@Name", Wing.Wing)

 params.Add("@Projno", Wing.Projno)

 params.Add("@BldgNo", Wing.BldgNo)

 Return objWingDL.InsertUpdateWing(params, Nothing)

 Catch ex As Exception
 Throw ex

 End Try
 End Function
 Public Function DeleteWing(ByVal Id As Integer) As Integer
 Try
 Dim params As Dictionary(Of String, Object)

 params = New Dictionary(Of String, Object)

 params.Add("@Id", Id)

 Return objWingDL.DeleteWing(params, Nothing)

 Catch ex As Exception
 Throw ex

 End Try
 End Function
 Public Function CheckWingExists() As DataTable
 Try
 Return objWingDL.CheckWingExists

 Catch ex As System.Exception
 Throw ex

 End Try
 End Function '
End Class
Public Class BuildingDL
 Dim objSqlHelper As SqlHelper
 Public Function InsertUpdateBuilding(ByVal params As Dictionary(Of String, Object), ByVal outparams As List(Of String)) As Integer
 Try
 Dim spName As String = "Sp_Building_InsertUpdate"
 objSqlHelper.ExecuteStoredProcedure(spName, params, Nothing)

 Return 0

 Catch ex As System.Exception
 Throw ex

 End Try '
 End Function
 Public Function DeleteBuilding(ByVal params As Dictionary(Of String, Object), ByVal outparams As List(Of String)) As Integer
 Try
 Dim spName As String = "Sp_Building_Delete"
 objSqlHelper.ExecuteStoredProcedure(spName, params, Nothing)

 Return 0

 Catch ex As System.Exception
 Throw ex

 End Try '
 End Function
 Public Function LoadBuildingType() As DataTable
 Try
 Dim spName As String = "SP_GetBuildingType"
 Dim ds As DataSet
 ds = objSqlHelper.GetMultipleResultSets(spName, Nothing)

 Return ds.Tables(0)

 Catch ex As System.Exception
 Throw ex

 End Try
 End Function
 Public Function CheckBuildingUsed() As DataTable
 Try
 Dim spName As String = "SP_CheckBuildingUsed"
 Dim ds As DataSet
 ds = objSqlHelper.GetMultipleResultSets(spName, Nothing)

 Return ds.Tables(0)

 Catch ex As System.Exception
 Throw ex

 End Try
 End Function
 Public Function CheckBuildingExists() As DataTable
 Try
 Dim spName As String = "SP_CheckBuildingExists"
 Dim ds As DataSet
 ds = objSqlHelper.GetMultipleResultSets(spName, Nothing)

 Return ds.Tables(0)

 Catch ex As System.Exception
 Throw ex

 End Try
 End Function '
End Class
Public Class WingDL
 Dim objSqlHelper As SqlHelper
 Public Function InsertUpdateWing(ByVal params As Dictionary(Of String, Object), ByVal outparams As List(Of String)) As Integer
 Try
 Dim spName As String = "sp_Wing_insertupdate"
 objSqlHelper.ExecuteStoredProcedure(spName, params, Nothing)

 Return 0

 Catch ex As System.Exception
 Throw ex

 End Try
 End Function
 Public Function DeleteWing(ByVal params As Dictionary(Of String, Object), ByVal outparams As List(Of String)) As Integer
 Try
 Dim spName As String = "Sp_Wing_Delete"
 objSqlHelper.ExecuteStoredProcedure(spName, params, Nothing)

 Return 0

 Catch ex As System.Exception
 Throw ex

 End Try '
 End Function
 Public Function CheckWingExists() As DataTable
 Try
 Dim spName As String = "SP_CheckWingExists"
 Dim ds As DataSet
 ds = objSqlHelper.GetMultipleResultSets(spName, Nothing)

 Return ds.Tables(0)

 Catch ex As System.Exception
 Throw ex

 End Try
 End Function
End Class
